Formation of Novel 1:2 Adducts Between Bun₃P·CS₂ and Electron-deficient Alkynes

R. Alan Aitken," *a* **George Fergusont** *b* **and Swati V. Rauta**

a Department of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, UK b Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario NIG 2W1, Canada

The zwitterionic adduct between tri-n-butylphosphine and carbon disulphide reacts under neutral conditions with two equivalents of dimethyl and diethyl acetylenedicarboxylate, dibenzoylacetylene and methyl benzoylpropiolate to give novel crystalline dithiole-containing ylides whose structure is established by X-ray crystallography.

Although the red crystalline adducts formed between trialkylphosphines and CS_2 were first reported as early as $1860¹$ and their zwitterionic phosphoniodithioformate structure was established by X-ray crystallography in 1961 ,² the cycloaddition reactions of this unusual type of 1,3-dipole have been little investigated. Reaction of **1** with acetylenic dipolarophiles such as dimethyl acetylenedicarboxylate (DMAD) does give 2-alkylidene-l,3-dithioles **3** if the addition is carried out in the presence of aromatic aldehydes to trap the initial 1 : 1 adducts **2** by a Wittig reaction.3 Thcse intermediates can also be trapped by protonation, either intramolecularly4 to give **4** or by carrying out the addition in the presence of HBF4 to give **5.5** Treatment of the stable salts 5 with Et_3N regenerates the phosphorane **2** thus allowing its use in the construction of a

variety of tetrathiafulvalene derivatives of interest as donors for organic conductors.⁶ We now report that, in the absence of any trap, **1** reacts with a variety of electron-deficient alkynes in a 1 : 2 ratio to form stable crystalline adducts.

Reaction of **1** with DMAD in either ether or dichloromethane at room temperature for 18-24 h followed by

t For enquiries concerning the X-ray structure determination.

evaporation and column chromatography afforded an adduct as yellow prisms (32%, m.p. 114-115[°]C, δ_P +21.9). Analytical and spectroscopic data clearly showed this to be a l : 2 adduct and the presence of four different ester groups initially led us to suspect that addition had occurred through the P and S atoms of **1** to give a structure like **6, 7** or **8.** We particularly favoured **7** since this had good precedent in the intermediate **9** postulated by Huisgen⁷ in the reaction of Ph_3P and dimethyl azodicarboxylate with methyl propiolate. However none of these structures was in full accord with the I3C NMR spectroscopic data \ddagger and the real structure was revealed by an X-ray diffraction study\$ to be **10.**

In molecule 10 (Fig. 1), the atoms $C(6)$ and $C(7)$ are essentially coplanar with the dithiole ring plane [torsion angle S(1)-C(2)-C(6)-C(7) 1.1(6)^o]. The relatively long P-C(7) $[1.726(5)$ Å] and C(41)-O(41) $[1.234(6)$ Å] distances together with the short value for $C(7)$ –C(41) [1.402(7) Å] provide the first X-ray evidence for the contribution of the phosphonium enolate form 11 in an ester-stabilised phosphorane, a feature consistent both with the only previous X-ray structures of

§ *Crystal data* for 10: $C_{25}H_{39}O_8PS_2$, $M = 562.69$, crystal dimensions $0.28 \times 0.36 \times 0.51$ mm, monoclinic space group $P2_1/n$, $a = 13.039(3)$, $b = 17.909(4)$, $c = 13.226(2)$ \AA $\beta = 100.23(2)$ °, $V = 3039.4$ \AA ³, $Z = 4$, $D_c = 1.23$ g cm⁻³. **11** (Mo-K α radiation. $\lambda = 0.71073$ Å) = 2.6 cm⁻¹. Intensity data were measured at 21 "C using an Enraf-Nonius CAD4 diffractometer. Lorentz and polarisation corrections were applied to the data. The structure was solved by direct methods and refined by full-matrix least-squares calculations with hydrogens allowed for as riding atoms. At convergence $R = 0.055$, $R_w = 0.077$ for 2271 reflections with $I > 3\sigma(I)$. Atomic coordinates, bond lengths and angles. and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors. Issue No. 1.

% *Nore mdded in prooj':* after submission of our paper the structure of $Ph_3P=C(CO_2Et)CO(CH_2)_3CO_2H$ was reported, but in that case the delocalisation is mainly into the keto carbonyl group; A. D. Abell. J. Trent and W. T. Robinson. *J. Chem. Soc.*, *Chem. Commun.*, 1991, *.362.*

Fig. 1 An ORTEP projection of **10.** [C(31), the atom bonded to C(7). $O(41)$ and $O(42)$, is not labelled for space considerations]. Selected bond lengths (\AA) and angles (°): P–C(7) 1.726(5); C(7)–C(41) 1.402(7); $C(41)-O(41)$ 1.234(6); $C(41)-O(42)$ 1.350(6); $C(7)-C(6)$ 1.492(6); C(6)-C(31) 1.450(7); C(31)-O(31) 1.218(6); C(6)-C(2) 1.360(7); $C(2) - S(1)$ 1.733(5); $S(1) - C(5)$ 1.742(5); $C(4) - C(5)$ 1.331(7); P–C(7)–C(41) 116.8(3); C(7)–C(41)–O(41) 126.2(5); P-C(7)-C(6) 120.4(4); C(7)-C(6)-C(31) 123.9(4); C(7)-C(6)-C(2) 118.8(4): S(1)-C(2)-S(3) 114.5(3): C(2)-S(1)-C(5) 95.2(3); $S(1)-C(2)-S(3)$ 114.5(3); C(2)-S(1)-C(5) **S(1)-C(5)-C(4)** 117.4(4): torsion angle P-C(7)-C(41)-O(41) $0.0(0.7)$.

 β -oxophosphoranes⁸ and with reactivity, dipole moment, UV^9 and IR studies.10 The compound showed typical reactivity for a stabilised yield: it could be readily converted by anhydrous acids to phosphonium salts **12** which reformed **10** upon treatment with triethylamine. It was resistant to Wittig reaction with 2,4-dinitrobenzaldchyde under forcing conditions.

The formation of this product is readily explained by initial reaction to give the 1 : 1 adduct of type **2** which then undergoes $[2 + 2]$ cycloaddition with a second DMAD molecule to give phosphacyclobutene **13** followed by electrocyclic ring-opening to give **10.** DMAD is already known to react in this way with phosphinimines, $Ph_3P=NAr, 11$ and with ylides such as $Ph_3P=CHPh$ and $Ph_3P=CPh_2^{12}$ while both stabilised ylides and phosphinimines are reported to undergo similar $[2 + 2]$ cycloaddition followed by ring-opening with activated nitriles.¹³ It is notable that only the 1:2 adduct 10 was formed even in the presence of excess of **1** implying that the initial 1 : 1 adduct **2** reacts much more readily with DMAD than does **1.**

Reaction of **1** with other electron-deficient alkynes gave adducts of similar structure: diethyl acetylenedicarboxylate gave **14** (43%, m.p. 90–91 °C, δ_P +21.4) and dibenzoylacetylene gave **15** (12%, m.p. 161–162 °C, δ_p + 19.5). In the case of the unsymmetrical alkyne $PhCOC \equiv CCO₂Me$ only two of the four possible isomers were formed in a 3 : 2 ratio (23%, m.p. 95-96 °C, δ_p +20.5, 20.4). The presence of a two-bond phosphorus coupling (\approx 8.5 Hz) on one PhCO signal of each isomer showed these to be the *E-* and 2-isomers **16** pointing to complete regiospecificity in the $[2 + 2]$ cycloaddition step. Further results on the cycloaddition **of 1** with other types of dipolarophile will be reported shortly.

We thank Mlle. Marie-Christine van der Maren (Université de Louvain) for somc preliminary experiments, the University

 $\frac{1}{2}$ *b_C* (75 MHz, CDCl₃) 13.6, 22.1[55], 24.2[15], 24.6[4], 42.1[122], *50.0.* 51.5. *53.0.* 53.1. 109.3[9]. 130.7. 136.2. 160.4. 160.35. 161.7[3]. 167.8 and 169.2[20] (Figures in square brackets are J_{C-P} in Hz).

of St. Andrews for a University Scholarship (to S.V.R.) and the Royal Society for a Warren Research Fellowship (to **R.A.A.**).

Received, 26th February 1991; Corn. 1/00912E

References

- 1 A. W. Hofmann, *Liebigs Ann. Chem. Suppl.,* 1860, **1,** 1.
- 2 T. N. Margulis and D. H. Templeton, *J. Am. Chem. Soc.*, 1961, 83, 995.
- *3* H. D. Hartzler, J. *Am. Chem.* SOC., 1971, **93,** 4961.
- 4 C. U. Pittman and M. Narita, J. *Chem.* SOC., *Chem. Commun.,* 1975, 960.
- *⁵*M. Sato, N. C. Gonella and M. P. Cava, J. *Org. Chem.,* 1979,44, 930.
- 6 T. Sugimoto, H. Awaji, I. Sugimoto, Y. Misaki, T. Kawase, **S.** Yoneda, Z. Yoshida, T. Kobayashi and H. Anzai, *Chern. Mater.,* 1989, **1,** *535; Y.* Misaki, Y. Matsumura, T. Sugimoto and Z. Yoshida, *Tetrahedron Lett.,* 1989, 30, 5289.
- 7 E. Brunn and R. Husigen, *Angew. Chem., Inr. Ed. Engl.,* 1969.8, 513.
- *8* A. J. Speziale and K. **W.** Ratts, *J. Am. Chern. Soc.,* 1965, 87, 5603; F. S. Stephens, *J. Chem. Soc.*, 1965, 5640, 5658.
- 9 F. Ramirez and **S.** Dershowitz, *J. Org. Chem.,* 1957, **22.** 41.
- 10 A. J. Speziale and K. W. Ratts, *J. Org. Chern..* 1963, 28, 465: *J. Am. Chem. Soc.,* 1963, 85, 2790.
- 11 G. W. Brown, *.I. Chem. Soc.(C),* 1967, 2018.

 \bar{z} $\hat{\mathcal{A}}$

- 12 H. J. Bestmann and O. Rothe, Angew. Chem., Int. Ed. Engl., 1964, 3, 512; J. B. Hendrickson, C. Hall, R. Rees and J. F. Templeton, *J. Org. Chem.,* 1965. 30, 3312.
- 13 E. Ciganek, *J. Org. Chem.,* 1970,35,3631; H. Trabelsi, E. Bollens and A. Cambon, *Synrhesis,* 1990, 623.